
Data Literate with R

Nicolas Meseth

Table of contents

Preface 4
Download materials . 4

I Data Loading 5

1 From CSV files 7

2 From Excel files 8

3 From RDS files 9
3.1 Saving data to .rds format . 9
3.2 Read more . 10

4 From Google Sheets 11

5 From JSON files 12

II Data Transformation 13

6 Five operations 15
6.1 A helper in data transformation . 15

7 Select columns 17
7.1 By column names . 17
7.2 By column name patterns . 18

7.2.1 Names starting with a string . 18
7.2.2 Names ending with a string . 18
7.2.3 Names with a string anywhere . 19
7.2.4 Complex scenarios with regular expressions 19
7.2.5 Combinations of patterns . 19

7.3 By data type . 20
7.4 By position . 21
7.5 By set affiliation . 22
7.6 Exclude columns . 22

2

8 Filter rows 23
8.1 The filter command . 23
8.2 Equals operator . 23
8.3 Arithmetic operators . 24
8.4 Logical combinations of filter expressions . 25
8.5 The between function . 26
8.6 Filtering based on a record’s index . 26

9 Add columns 28

10 Summarize rows 29

11 Sort rows 30

III Data Visualization 31

12 Overview 33

13 Pleas for visualization 34
13.1 Visualization can reveal hidden patterns . 35
13.2 Anscombe’s Quartet . 38
13.3 References . 41

IV Appendix 42

14 Slides 44

3

Preface

Download materials

You can download the ZIP-archive with all material here. This archive includes:

Folder Content
book The compiled book in PDF format
data All data from the chapters
docs All chapters as single PDF files
exercises All exercises as PDF files (sometimes with solutions)
scripts All code from the chapters as plain R-Scripts (.R)
slides A collection of slide decks in PDF format

4

data-literate-with-R.zip

Part I

Data Loading

5

This part deals with loading data from various sources.

6

1 From CSV files

Loading data from a CSV file is simple with the {readr} package:

orders <- read_csv("data/orders.csv")

#> order_id name order~1 app_id created_at updated_at test curre~2 curre~3 curre~4
#> <dbl> <chr> <dbl> <dbl> <dttm> <dttm> <lgl> <dbl> <dbl> <dbl>
> 1 1.13e12 B1014 1014 580111 2019-05-24 12:59:16 2019-06-19 13:23:26 FALSE 94.7 94.7 2
#> 2 1.13e12 B1015 1015 580111 2019-05-24 13:09:08 2019-06-21 14:40:07 FALSE 32.2 32.2 0
#> 3 1.13e12 B1016 1016 580111 2019-05-24 13:22:41 2019-06-21 12:35:23 FALSE 30.2 30.2 2
#> ...

7

2 From Excel files

Coming soon.

8

3 From RDS files

With the readRDS() function, we can load data from R’s proprietary data format:

orders <- readRDS(file = "data/orders.rds")

If the original data was a tibble, as in this case, the loaded data will be, too:

orders

A tibble: 2,874 x 68
order_id name order~1 app_id created_at updated_at test

<dbl> <chr> <dbl> <dbl> <dttm> <dttm> <lgl>
1 1.13e12 B1014 1014 580111 2019-05-24 12:59:16 2019-06-19 13:23:26 FALSE
2 1.13e12 B1015 1015 580111 2019-05-24 13:09:08 2019-06-21 14:40:07 FALSE
3 1.13e12 B1016 1016 580111 2019-05-24 13:22:41 2019-06-21 12:35:23 FALSE
4 1.13e12 B1017 1017 580111 2019-05-24 13:27:43 2019-06-21 14:27:18 FALSE
5 1.13e12 B1018 1018 580111 2019-05-24 13:36:46 2019-06-21 12:11:57 FALSE
6 1.13e12 B1019 1019 580111 2019-05-24 13:44:41 2019-06-21 14:37:21 FALSE
7 1.13e12 B1020 1020 580111 2019-05-24 13:49:21 2019-06-21 12:25:16 FALSE
8 1.13e12 B1021 1021 580111 2019-05-24 13:59:57 2019-06-21 11:49:47 FALSE
9 1.13e12 B1022 1022 580111 2019-05-24 14:43:53 2019-06-19 14:12:38 FALSE

10 1.13e12 B1023 1023 580111 2019-05-24 14:48:16 2019-06-21 15:54:24 FALSE
... with 2,864 more rows, 61 more variables: current_subtotal_price <dbl>,
current_total_price <dbl>, current_total_discounts <dbl>,
current_total_duties_set <dbl>, total_discounts <dbl>,
total_line_items_price <dbl>, total_outstanding <dbl>, total_price <dbl>,
total_tax <dbl>, total_tip_received <dbl>, taxes_included <lgl>,
discount_codes <chr>, financial_status <chr>, fulfillment_status <chr>,
source_name <chr>, landing_site <chr>, landing_site_ref <chr>, ...

3.1 Saving data to .rds format

We can save any data frame to an .rds file using the saveRDS() function:

9

saveRDS(orders, file = "data/orders.rds")

3.2 Read more

Find more information in the R file format under the following links:

• Hands-On Programming with R - Appendix D.4 - R Files

10

https://jjallaire.github.io/hopr/a4-data.html#r-files

4 From Google Sheets

Coming soon.

11

5 From JSON files

Coming soon.

12

Part II

Data Transformation

13

This part introduces the basic tools for data transformation with R.

14

6 Five operations

Data is the new oil, at least according to the mathematician Clive Humby:

“Data is the new oil. Like oil, data is valuable, but if unrefined, it cannot really be
used. It has to be changed into gas, plastic, chemicals, etc. to create a valuable
entity that drives profitable activity. So, must data be broken down, analysed for
it to have value.”

If we take this analogy seriously, the data, like oil, needs to be refined to turn it into something
of value. Two important tools for refining data into a valuable output are data transformation
and data visualization, both of which are the main focus of this book. In this part of the book,
we first need to learn how to transform data from one form into another, so that we can apply
visualization later on.

To master data transformation, we need to learn how to perform the following operations. We
always start with a given data frame that we want to change into something else. In doing
that, we typically want to …

1. … remove variables we don’t currently need (or specify those we do need)
2. … remove any records we don’t currently need (or specify those we do need)
3. … add new variables we need, but that don’t exist yet
4. … summarize many records into one or a few numbers
5. … change the order of the records

The goal of the following chapters is to introduce means to perform theses five operations with
R.

6.1 A helper in data transformation

To better understand what a transformation step does to our original data, there is a package
called {tidylog} to help us. When the package is loaded, it overrides some of the {dplyr}
functions and adds an extra output to the console. The output depends on the particular
function, but in general, it gives us information about:

• How many columns where dropped by a select command
• How many rows where dropped by a filter command

15

https://en.wikipedia.org/wiki/Clive_Humby

library(tidylog)

Attache Paket: 'tidylog'

Das folgende Objekt ist maskiert 'package:stats':

filter

16

7 Select columns

This chapter introduces tools to remove unnecessary columns from the data set. Or, positively
stated, we learn how to specify the columns we need for our analysis. As with most data
transformation operations, we mostly introduce functions from the {dplyr} package.

The function select() is the designated tool to select columns with {dplyr}. By passing
different things to the function, we can efficiently define the set of columns in the resulting
data frame.

7.1 By column names

The easiest and intuitive way to specify the columns we want is by listing their names. We
can pass one or more column names to the select() function. In case of two or more, we use
commas to separate the names:

Just one column name
orders %>%

select(order_id)

#> # A tibble: 2,874 x 1
#> order_id
#> <dbl>
#> 1 1130007101519
#> 2 1130014965839
#> 3 1130026958927
#> ...

A list of column names
orders %>%

select(order_id, total_price)

#> # A tibble: 2,874 x 2
#> order_id total_price
#> <dbl> <dbl>
#> 1 1130007101519 94.7

17

#> 2 1130014965839 32.2
#> 3 1130026958927 30.2
#> ...

When we only want a few columns, this approach works fine and is usually a good choice. I
expect you apply this method in more than 90% of all cases. However, there are cases when
you’d wish there was something more flexible. Luckily, there is.

7.2 By column name patterns

7.2.1 Names starting with a string

Sometimes we want to select columns based on a pattern of their names. Take the orders data
set as an example. Here, all variables that contain information about the shipping address
have the prefix shipping. We leverage this with the helper function starts_with():

orders %>%
select(starts_with("shipping")) %>%
colnames()

#> [1] "shipping_address_city" "shipping_address_zip" "shipping_address_country"
#> [4] "shipping_address_latitude" "shipping_address_longitude"

7.2.2 Names ending with a string

Similar to start_with(), the function ends_with() looks for a string at the end of a column
name. For example, all columns that contain a date/time information in the data set end with
the suffix _at. We can take advantage of that in case we wanted to select all theses columns
efficiently:

orders %>%
select(ends_with(("_at"))) %>%
colnames()

#> [1] "created_at" "updated_at"
#> [3] "processed_at" "customer_accepts_marketing_updated_at"
#> [5] "customer_created_at" "customer_updated_at"
#> [7] "cancelled_at" "closed_at"

18

7.2.3 Names with a string anywhere

To complete the picture, we can also search for string somewhere in a column name. The
contains() function does exactly that:

orders %>%
select(contains("price")) %>%
colnames()

#> [1] "current_subtotal_price" "current_total_price" "total_line_items_price"
#> [4] "total_price"

7.2.4 Complex scenarios with regular expressions

In some cases, it might not be enough to just match strings in column names. It is easy to
imagine more complex patterns, involving wildcards or a specifiy order in which symbols must
appear in a column name. For all this, regular expressions are a wonderful, albeit complex,
solution. If you regularly encounter such complex scenarios, I recommend you familiarize
yourself with the basics of regular expressions. I rarely need them myself, and if I do, I look
up the expression on the internet using a good Google search.

I cannot think a useful example in the context of the orders data set. However, the following
regular expressions looks for the string _at at the end of the column name. Thus, it mirrors
the example from above, but solves it with a regular expression:

orders %>%
select(matches("_at$")) %>%
colnames()

#> [1] "created_at" "updated_at"
#> [3] "processed_at" "customer_accepts_marketing_updated_at"
#> [5] "customer_created_at" "customer_updated_at"
#> [7] "cancelled_at" "closed_at"

7.2.5 Combinations of patterns

We can combine the functions that look for strings in column names to create more specific
pattern searches. The example below uses the & operator to connect two functions with a logical
and. This means, both expressions must evaluate to true for the column to be selected:

19

orders %>%
select(starts_with("customer") & ends_with("_at")) %>%
colnames()

#> [1] "customer_accepts_marketing_updated_at" "customer_created_at"
#> [3] "customer_updated_at"

In contrast to filter, where a comma-separated list of expressions combines them with
a logical and, when using this approach with select, the resulting columns are com-
bined to a unified set of columns. This means a logical or is applied. For example,
listing starts_with("customer") and ends_with("_at") separated by a comma keeps
all columns that start with “customer” or that end with “_at”.

7.3 By data type

Another flexible way to select columns is by their data type. Say we want to select all numeric
columns, because we want to calculate the mean value across all of them in the next step
of the pipeline. There is shortcut for this, using the where() function in combination with
is.numeric:

orders %>%
select(where(is.numeric)) %>%
colnames()

#> [1] "order_id" "order_number" "app_id"
#> [4] "current_subtotal_price" "current_total_price" "current_total_discounts
#> [7] "current_total_duties_set" "total_discounts" "total_line_items_price" ...

Of course there are functions for all other data types as well:

orders %>%
select(where(is.logical))

orders %>%
select(where(is.character))

orders %>%
select(where(is.factor))

20

orders %>%
select(where(is.list))

The package lubridate provides a function to check for date (without time) ...
orders %>%

select(where(lubridate::is.Date))

... and one for date with time
orders %>%

select(where(lubridate::is.POSIXct))

7.4 By position

Another way we can address columns is by their position or index.

Select last column
orders %>%

select(last_col())

Select last second last column
orders %>%

select(last_col(2))

Select first column
orders %>%

select(1)

Select a range of columns
orders %>%

select(2:6)

Select everything but the last two columns
orders %>%

select(1:last_col(2))

21

7.5 By set affiliation

Define a set of columns in a vector and select this set
cols <- c("created_at", "updated_at")

orders %>%
select(all_of(cols))

#> # A tibble: 2,874 x 2
#> created_at updated_at
#> <dttm> <dttm>
#> 1 2019-05-24 12:59:16 2019-06-19 13:23:26
#> 2 2019-05-24 13:09:08 2019-06-21 14:40:07
#> 3 2019-05-24 13:22:41 2019-06-21 12:35:23
#> ...

7.6 Exclude columns

The previous sections introduced ways to select columns, that is, specifying what we want.
Sometimes it is more efficient to tell R what we don’t want. The minus sign - negates any
selection from the previous sections. The following command gives us all columns except the
order_id:

orders %>%
select(-order_id)

We can combine positive and negative selections as we need:

orders %>%
select(ends_with("_at"), -closed_at, -processed_at) %>%
colnames()

#> [1] "created_at" "updated_at"
#> [3] "customer_accepts_marketing_updated_at" "customer_created_at"
#> [5] "customer_updated_at" "cancelled_at"

22

8 Filter rows

This chapter introduces the following new concepts and functions:

• filter()
• Arithmetic operators such as ==, !=, >´,<,>=, and<=‘
• Logical operators such as &, |, and xor()
• The between() function
• slice() and its variants

8.1 The filter command

Besides selecting the columns we need, we need tools to restrict the rows in a data frame. For
this, the {dplyr} package offers the filter command.

The filter command takes one or more expressions, which must evaluate to TRUE or FALSE.
These types of expressions are called boolean expressions, named after George Boole, who
invented the Boolean algebra. Every expression passed to the filter command is evaluated
for every row in the data frame. Only if the expression returns TRUE for a row, this row is
included in the resulting data frame.

To form expressions, we can use a number of operators and functions. This chapter introduces
the basic ways to express filter conditions on our data.

8.2 Equals operator

The simplest way to filter data is to compare column to a given value. This way, we can get
all orders from female customers:

orders %>%
filter(customer_gender == "f")

#> filter: removed 1,613 rows (56%), 1,261 rows remaining

23

https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/Boolean_algebra

As you can see, the equals operator in R consists of two equal signs in a row (==). This is
important, as using only one equals sign results in an error. A single equals sign is reserved
for assignments, such as when we create a new column with mutate.

In the example above, the customer_gender column is of the data type chr, which means it
contains alphanumeric symbols. For such columns, when comparing values, we must enclose
the literal values with quotations marks. This is because the data type chr can contain spaces.
If we didn’t use quotation marks, R wouldn’t know where the string of alphanumeric character
starts and ends.

The equals comparison == is useful mostly for discrete data types. Un R, these include strings
(or chr), whole numbers (integer), dates, and factors. Data types such as decimal numbers
(double) or datetime can in principle compared to a specific value using the comparison opera-
tor ==, but given their continuous nature, it usually doesn’t make too much sense. Arithmetic
operators, such as less than or greater than, are much more useful in these cases.

8.3 Arithmetic operators

The following filter removes all rows where the total price is below 50 euros:

orders %>%
filter(total_price < 50)

#> filter: removed 633 rows (22%), 2,241 rows remaining

We can combine filter conditions by listing them comma-separated:

orders %>%
filter(total_price < 50, customer_gender == "f")

#> filter: removed 1,868 rows (65%), 1,006 rows remaining

This is equivalent to having two subsequent filter statements in a pipeline:

orders %>%
filter(total_price < 50) %>%
filter(customer_gender == "f")

#> filter: removed 633 rows (22%), 2,241 rows remaining
#> filter: removed 1,235 rows (55%), 1,006 rows remaining

24

8.4 Logical combinations of filter expressions

As shown above, When we list two filter expressions separated by comma, they are connected
with the logical operator and:

Customer who are female and university staff at the same time
orders %>%

filter(customer_gender == "f", customer_is_hsos == TRUE)

#> filter: removed 2,651 rows (92%), 223 rows remaining

We can do that explicitly by using the official and operator, which is denoted by the symbol
&.

Same as above, with explicit AND symbol
orders %>%

filter(customer_gender == "f" & customer_is_hsos == TRUE)

#> filter: removed 2,651 rows (92%), 223 rows remaining

Or by having two subsequent filter command in our pipeline:

Same as above, but with two filter commands in a row
orders %>%

filter(customer_gender == "f") %>%
filter(customer_is_hsos == TRUE)

#> filter: removed 1,613 rows (56%), 1,261 rows remaining
#> filter: removed 1,038 rows (82%), 223 rows remaining

An advantage of two filter commands is that the {tidylog} package prints the effect for
each of the two filter expressions separately. So if we are interested in that, this is a good
option.

Another way to logically combine filter expressions is the OR operator, which is symbolized
by the | character:

Customers who are either female or university staff (or both)
orders %>%

filter(customer_gender == "f" | customer_is_hsos == TRUE)

#> filter: removed 1,352 rows (47%), 1,522 rows remaining

25

The OR operator is fundamentally different to the AND operator. In contrast to the example
with the AND, a row in the OR example must only meet one of the two conditions to be kept
in the result. It can meet both, but only one is required. Only if both evaluate to FALSE, the
row is removed.

8.5 The between function

If we want to keep records whose value for numerical column is within a give range, we can
achieve this with the logical AND:

orders %>%
filter(total_price >= 10 & total_price <= 20) %>%
select(total_price)

#> filter: removed 2,392 rows (83%), 482 rows remaining
#> select: dropped 67 variables (order_id, name, order_number, app_id, created_at, …)
#> # A tibble: 482 x 1
#> total_price
#> <dbl>
#> 1 10
#> 2 12
#> 3 15.0
#> 4 14.9
#> ...

For filtering on ranges, the between() function is an alternative:

This is equivalent and a bit more efficient than a combination of >= and <=
orders %>%

filter(between(total_price, 10, 20))

#> filter: removed 2,392 rows (83%), 482 rows remaining

8.6 Filtering based on a record’s index

Keep only the first row
orders %>%

slice(1)

26

Keep the first 10 rows
orders %>%

slice(1:10)

27

9 Add columns

28

10 Summarize rows

29

11 Sort rows

30

Part III

Data Visualization

31

This part introduces the basic tools for data visualization with R.

32

12 Overview

33

13 Pleas for visualization

The R code for the following sections is also available as plain .R scripts. If you downloaded
the ZIP-file and you view this as a PDF-document, you find the .R files in the same folder as
this document.

To illustrate why data visualization is useful, let’s look at two examples. Below we read some
data from a CSV-file.

some_data <- read_csv("data/some_data.csv")

#> # A tibble: 142 x 2
#> x y
#> <dbl> <dbl>
#> 1 55.4 97.2
#> 2 51.5 96.0
#> 3 46.2 94.5
#> ...

As you can see, the data contains two variables x and y with 142.

If we didn’t have visualization as a tool in our data analytics toolkit, we could try to get some
insight into the data with descriptive statistics. For example, we could calculate the mean for
both variables:

some_data %>%
summarise(across(everything(), mean, .names = "{.col}_mean"))

A tibble: 1 x 2
x_mean y_mean
<dbl> <dbl>

1 54.3 47.8

Similarly, we could calculate a measure of spread, such as the standard deviation:

some_data %>%
summarise(across(everything(), sd, .names = "{.col}_sd"))

34

A tibble: 1 x 2
x_sd y_sd

<dbl> <dbl>
1 16.8 26.9

Or other measures:

some_data %>%
summarise(

across(everything(),
list(mean = mean, sd = sd, median = median),
.names = "{.col}_{.fn}"
)

)

A tibble: 1 x 6
x_mean x_sd x_median y_mean y_sd y_median
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 54.3 16.8 53.3 47.8 26.9 46.0

We could also calculate Pearson’s correlation coefficient:

tibble(
pearson = cor(some_data$x, some_data$y)
)

A tibble: 1 x 1
pearson

<dbl>
1 -0.0645

From the rather small value, we could hypothesize that the variables are unrelated. But are
they?

13.1 Visualization can reveal hidden patterns

Let’s add visualization to our toolkit and find out:

35

some_data %>%
ggplot() +
aes(x, y) +
geom_point()

0

25

50

75

100

20 40 60 80 100
x

y

The data certainly does not look unrelated to me. Of course, this an exaggerated example,
but it makes the point: Only when we visualize data can we identify patterns that would
otherwise stay hidden in the numbers. No statistical method could have told us there is a
dinosaur hidden in the data. Well, actually it is called a datasaurus, and there is a whole
R-package with the name {datasauRus} dedicated to it. This packages contains the same
data set, but adds more that share the same statistical measures. We could not distinguish
between the data by just looking at measures such as mean, standard deviation or correlation
coefficient. We would have to visualize the data:

#install.packages("datasauRus")
library(datasauRus)

datasaurus_dozen %>%
group_by(dataset) %>%
summarize(

mean_x = mean(x),

36

mean_y = mean(y),
std_dev_x = sd(x),
std_dev_y = sd(y),
corr_x_y = cor(x, y)
)

A tibble: 13 x 6
dataset mean_x mean_y std_dev_x std_dev_y corr_x_y
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 away 54.3 47.8 16.8 26.9 -0.0641
2 bullseye 54.3 47.8 16.8 26.9 -0.0686
3 circle 54.3 47.8 16.8 26.9 -0.0683
4 dino 54.3 47.8 16.8 26.9 -0.0645
5 dots 54.3 47.8 16.8 26.9 -0.0603
6 h_lines 54.3 47.8 16.8 26.9 -0.0617
7 high_lines 54.3 47.8 16.8 26.9 -0.0685
8 slant_down 54.3 47.8 16.8 26.9 -0.0690
9 slant_up 54.3 47.8 16.8 26.9 -0.0686

10 star 54.3 47.8 16.8 26.9 -0.0630
11 v_lines 54.3 47.8 16.8 26.9 -0.0694
12 wide_lines 54.3 47.8 16.8 26.9 -0.0666
13 x_shape 54.3 47.8 16.8 26.9 -0.0656

The table shows the mean, standard deviation and correlation coefficient for all 13 data sets
included in the {datasauRus} package. As you can see, the values are nearly the same across
all data sets. Only when we visualize do we see the different patterns in the data:

datasaurus_dozen %>%
ggplot() +
aes(x = x, y = y, colour = dataset) +
geom_point() +
theme_void() +
theme(legend.position = "none") +
facet_wrap(~dataset, ncol = 4)

37

x_shape

slant_up star v_lines wide_lines

dots h_lines high_lines slant_down

away bullseye circle dino

13.2 Anscombe’s Quartet

Another and even older plea for the visualization of data can be found in Francis Anscombe’s
publication Graphs in Statistical Analysis from the year 1973. In his paper, Anscombe presents
four data sets that look very much the same when viewing the common descriptive statistical
measures. Again, only by visualizing the data can we see the otherwise hidden patterns.

Let’s load the data and see for ourselves:

anscombe1 <- read_csv("data/anscombe1.csv") %>%
mutate(dataset = "1")

anscombe2 <- read_csv("data/anscombe2.csv") %>%
mutate(dataset = "2")

anscombe3 <- read_csv("data/anscombe3.csv") %>%
mutate(dataset = "3")

anscombe4 <- read_csv("data/anscombe4.csv") %>%
mutate(dataset = "4")

38

For convenience, we want all four of Anscombe’s data sets in one data frame. We can achieve
this with the union_all() function:

anscombe <-
anscombe1 %>%
union_all(anscombe2) %>%
union_all(anscombe3) %>%
union_all(anscombe4)

#> # A tibble: 44 x 3
#> x y dataset
#> <dbl> <dbl> <chr>
#> 1 10 8.04 1
#> 2 8 6.95 1
#> 3 13 7.58 1
#> ...

We now have all four of Anscombe’s Quartet in one data frame and we can distinguish the
original data set by the column dataset. First, let’s look at the descriptive statistics:

anscombe %>%
group_by(dataset) %>%
summarize(

mean_x = mean(x),
mean_y = mean(y),
std_dev_x = sd(x),
std_dev_y = sd(y),
corr_x_y = cor(x, y)
)

A tibble: 4 x 6
dataset mean_x mean_y std_dev_x std_dev_y corr_x_y
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 9 7.50 3.32 2.03 0.816
2 2 9 7.50 3.32 2.03 0.816
3 3 9 7.5 3.32 2.03 0.816
4 4 9 7.50 3.32 2.03 0.817

As expected, all measures look the same for all 4 data sets. But again, a plot reveals the
truth:

39

anscombe %>%
ggplot() +
aes(x, y) +
geom_point() +
theme_bw() +
theme(legend.position = "none") +
facet_wrap(~dataset, ncol = 2)

3 4

1 2

5 10 15 5 10 15

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

x

y

The first plot shows a linear trend with some noise, as we might already have suspected from a
correlation coefficient of roughly 0.81. The second plot, although having the same correlation
coefficient, displays a non-linear trajectory. The third plot would have had a perfect correlation
if it wasn’t for the single outlier. In contrast, the last plot would have had no correlation
between x and y, if the point on the very top-right didn’t exist. Again, we could not have
gotten this insight from any statistical measure we can calculate.

I hope the examples convinced you of the importance of data visualization. There are even
more good reasons why we should visualize data, besides revealing hidden patterns. We know
from psychological research about the way humans process information that visualizations
are a much faster way into our brains. We can not only grasp what we see in a good data
visualization faster, but also comprehend it better and create a better memory of it. If that
doesn’t convince you, nothing will.

40

13.3 References

• The official website of the {datasauRus} package

• YouTube video on Anscombe’s Quartet

• Original Paper Graphs in Statistical Analysis by Francis Anscombe

• Slide Deck: Visualizations - What works with humans?

41

https://cran.r-project.org/web/packages/datasauRus/vignettes/Datasaurus.html
https://www.youtube.com/watch?v=Kd--Q-aTwpM
https://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
https://docs.google.com/presentation/d/1_88evfU3IL2LWkaEa01ae4fL9xyDSfsYm_y-uiKnxHs/view

Part IV

Appendix

42

The appendix contains useful resources.

43

14 Slides

44

	Preface
	Download materials

	Data Loading
	From CSV files
	From Excel files
	From RDS files
	Saving data to .rds format
	Read more

	From Google Sheets
	From JSON files

	Data Transformation
	Five operations
	A helper in data transformation

	Select columns
	By column names
	By column name patterns
	Names starting with a string
	Names ending with a string
	Names with a string anywhere
	Complex scenarios with regular expressions
	Combinations of patterns

	By data type
	By position
	By set affiliation
	Exclude columns

	Filter rows
	The filter command
	Equals operator
	Arithmetic operators
	Logical combinations of filter expressions
	The between function
	Filtering based on a record's index

	Add columns
	Summarize rows
	Sort rows

	Data Visualization
	Overview
	Pleas for visualization
	Visualization can reveal hidden patterns
	Anscombe's Quartet
	References

	Appendix
	Slides

