
Select columns
Prof. Dr. Nicolas Meseth

This chapter introduces tools to remove unnecessary columns from the data set. Or, positively
stated, we learn how to specify the columns we need for our analysis. As with most data
transformation operations, we mostly introduce functions from the {dplyr} package.

The select command

The function select() is the designated tool to select columns with {dplyr}. By passing
different things to the function, we can efficiently define the set of columns in the resulting
data frame.

By column names

The easiest and intuitive way to specify the columns we want is by listing their names. We
can pass one or more column names to the select() function. In case of two or more, we use
commas to separate the names:

Just one column name
orders %>%

select(order_id)

#> # A tibble: 2,874 x 1
#> order_id
#> <dbl>
#> 1 1130007101519
#> 2 1130014965839
#> 3 1130026958927
#> ...

A list of column names
orders %>%

1

select(order_id, total_price)

#> # A tibble: 2,874 x 2
#> order_id total_price
#> <dbl> <dbl>
#> 1 1130007101519 94.7
#> 2 1130014965839 32.2
#> 3 1130026958927 30.2
#> ...

When we only want a few columns, this approach works fine and is usually a good choice. I
expect you apply this method in more than 90% of all cases. However, there are cases when
you’d wish there was something more flexible. Luckily, there is.

By column name patterns

Names starting with a string

Sometimes we want to select columns based on a pattern of their names. Take the orders data
set as an example. Here, all variables that contain information about the shipping address
have the prefix shipping. We leverage this with the helper function starts_with():

orders %>%
select(starts_with("shipping")) %>%
colnames()

#> [1] "shipping_address_city" "shipping_address_zip" "shipping_address_country"
#> [4] "shipping_address_latitude" "shipping_address_longitude"

Names ending with a string

Similar to start_with(), the function ends_with() looks for a string at the end of a column
name. For example, all columns that contain a date/time information in the data set end with
the suffix _at. We can take advantage of that in case we wanted to select all theses columns
efficiently:

orders %>%
select(ends_with(("_at"))) %>%
colnames()

2

#> [1] "created_at" "updated_at"
#> [3] "processed_at" "customer_accepts_marketing_updated_at"
#> [5] "customer_created_at" "customer_updated_at"
#> [7] "cancelled_at" "closed_at"

Names with a string anywhere

To complete the picture, we can also search for string somewhere in a column name. The
contains() function does exactly that:

orders %>%
select(contains("price")) %>%
colnames()

#> [1] "current_subtotal_price" "current_total_price" "total_line_items_price"
#> [4] "total_price"

Complex scenarios with regular expressions

In some cases, it might not be enough to just match strings in column names. It is easy to
imagine more complex patterns, involving wildcards or a specifiy order in which symbols must
appear in a column name. For all this, regular expressions are a wonderful, albeit complex,
solution. If you regularly encounter such complex scenarios, I recommend you familiarize
yourself with the basics of regular expressions. I rarely need them myself, and if I do, I look
up the expression on the internet using a good Google search.

I cannot think a useful example in the context of the orders data set. However, the following
regular expressions looks for the string _at at the end of the column name. Thus, it mirrors
the example from above, but solves it with a regular expression:

orders %>%
select(matches("_at$")) %>%
colnames()

#> [1] "created_at" "updated_at"
#> [3] "processed_at" "customer_accepts_marketing_updated_at"
#> [5] "customer_created_at" "customer_updated_at"
#> [7] "cancelled_at" "closed_at"

3

Combinations of patterns

We can combine the functions that look for strings in column names to create more specific
pattern searches. The example below uses the & operator to connect two functions with a logical
and. This means, both expressions must evaluate to true for the column to be selected:

orders %>%
select(starts_with("customer") & ends_with("_at")) %>%
colnames()

#> [1] "customer_accepts_marketing_updated_at" "customer_created_at"
#> [3] "customer_updated_at"

In contrast to filter, where a comma-separated list of expressions combines them with
a logical and, when using this approach with select, the resulting columns are com-
bined to a unified set of columns. This means a logical or is applied. For example,
listing starts_with("customer") and ends_with("_at") separated by a comma keeps
all columns that start with “customer” or that end with “_at”.

By data type

Another flexible way to select columns is by their data type. Say we want to select all numeric
columns, because we want to calculate the mean value across all of them in the next step
of the pipeline. There is shortcut for this, using the where() function in combination with
is.numeric:

orders %>%
select(where(is.numeric)) %>%
colnames()

#> [1] "order_id" "order_number" "app_id"
#> [4] "current_subtotal_price" "current_total_price" "current_total_discounts
#> [7] "current_total_duties_set" "total_discounts" "total_line_items_price" ...

Of course there are functions for all other data types as well:

orders %>%
select(where(is.logical))

orders %>%

4

select(where(is.character))

orders %>%
select(where(is.factor))

orders %>%
select(where(is.list))

The package lubridate provides a function to check for date (without time) ...
orders %>%

select(where(lubridate::is.Date))

... and one for date with time
orders %>%

select(where(lubridate::is.POSIXct))

By position

Another way we can address columns is by their position or index.

Select last column
orders %>%

select(last_col())

Select last second last column
orders %>%

select(last_col(2))

Select first column
orders %>%

select(1)

Select a range of columns
orders %>%

select(2:6)

Select everything but the last two columns
orders %>%

select(1:last_col(2))

5

By set affiliation

Define a set of columns in a vector and select this set
cols <- c("created_at", "updated_at")

orders %>%
select(all_of(cols))

#> # A tibble: 2,874 x 2
#> created_at updated_at
#> <dttm> <dttm>
#> 1 2019-05-24 12:59:16 2019-06-19 13:23:26
#> 2 2019-05-24 13:09:08 2019-06-21 14:40:07
#> 3 2019-05-24 13:22:41 2019-06-21 12:35:23
#> ...

Exclude columns

The previous sections introduced ways to select columns, that is, specifying what we want.
Sometimes it is more efficient to tell R what we don’t want. The minus sign - negates any
selection from the previous sections. The following command gives us all columns except the
order_id:

orders %>%
select(-order_id)

We can combine positive and negative selections as we need:

orders %>%
select(ends_with("_at"), -closed_at, -processed_at) %>%
colnames()

#> [1] "created_at" "updated_at"
#> [3] "customer_accepts_marketing_updated_at" "customer_created_at"
#> [5] "customer_updated_at" "cancelled_at"

6

	The select command
	By column names
	By column name patterns
	Names starting with a string
	Names ending with a string
	Names with a string anywhere
	Complex scenarios with regular expressions
	Combinations of patterns

	By data type
	By position
	By set affiliation
	Exclude columns

